3.829 \(\int \frac{1}{x^2 \sqrt{a+b x^4}} \, dx\)

Optimal. Leaf size=232 \[ \frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac{1}{2}\right )}{2 a^{3/4} \sqrt{a+b x^4}}-\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{a^{3/4} \sqrt{a+b x^4}}+\frac{\sqrt{b} x \sqrt{a+b x^4}}{a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{\sqrt{a+b x^4}}{a x} \]

[Out]

-(Sqrt[a + b*x^4]/(a*x)) + (Sqrt[b]*x*Sqrt[a + b*x^4])/(a*(Sqrt[a] + Sqrt[b]*x^2)) - (b^(1/4)*(Sqrt[a] + Sqrt[
b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(a^(3/4)*Sq
rt[a + b*x^4]) + (b^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcT
an[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(3/4)*Sqrt[a + b*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0666828, antiderivative size = 232, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {325, 305, 220, 1196} \[ \frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} \sqrt{a+b x^4}}-\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{a^{3/4} \sqrt{a+b x^4}}+\frac{\sqrt{b} x \sqrt{a+b x^4}}{a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{\sqrt{a+b x^4}}{a x} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*Sqrt[a + b*x^4]),x]

[Out]

-(Sqrt[a + b*x^4]/(a*x)) + (Sqrt[b]*x*Sqrt[a + b*x^4])/(a*(Sqrt[a] + Sqrt[b]*x^2)) - (b^(1/4)*(Sqrt[a] + Sqrt[
b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(a^(3/4)*Sq
rt[a + b*x^4]) + (b^(1/4)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcT
an[(b^(1/4)*x)/a^(1/4)], 1/2])/(2*a^(3/4)*Sqrt[a + b*x^4])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \sqrt{a+b x^4}} \, dx &=-\frac{\sqrt{a+b x^4}}{a x}+\frac{b \int \frac{x^2}{\sqrt{a+b x^4}} \, dx}{a}\\ &=-\frac{\sqrt{a+b x^4}}{a x}+\frac{\sqrt{b} \int \frac{1}{\sqrt{a+b x^4}} \, dx}{\sqrt{a}}-\frac{\sqrt{b} \int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a}}}{\sqrt{a+b x^4}} \, dx}{\sqrt{a}}\\ &=-\frac{\sqrt{a+b x^4}}{a x}+\frac{\sqrt{b} x \sqrt{a+b x^4}}{a \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{a^{3/4} \sqrt{a+b x^4}}+\frac{\sqrt [4]{b} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} \sqrt{a+b x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0086233, size = 49, normalized size = 0.21 \[ -\frac{\sqrt{\frac{b x^4}{a}+1} \, _2F_1\left (-\frac{1}{4},\frac{1}{2};\frac{3}{4};-\frac{b x^4}{a}\right )}{x \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*Sqrt[a + b*x^4]),x]

[Out]

-((Sqrt[1 + (b*x^4)/a]*Hypergeometric2F1[-1/4, 1/2, 3/4, -((b*x^4)/a)])/(x*Sqrt[a + b*x^4]))

________________________________________________________________________________________

Maple [C]  time = 0.009, size = 115, normalized size = 0.5 \begin{align*} -{\frac{1}{ax}\sqrt{b{x}^{4}+a}}+{i\sqrt{b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(b*x^4+a)^(1/2),x)

[Out]

-(b*x^4+a)^(1/2)/a/x+I*b^(1/2)/a^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*
b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(
1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{4} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^4 + a)*x^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{4} + a}}{b x^{6} + a x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^4 + a)/(b*x^6 + a*x^2), x)

________________________________________________________________________________________

Sympy [C]  time = 0.957053, size = 39, normalized size = 0.17 \begin{align*} \frac{\Gamma \left (- \frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{4}, \frac{1}{2} \\ \frac{3}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt{a} x \Gamma \left (\frac{3}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(b*x**4+a)**(1/2),x)

[Out]

gamma(-1/4)*hyper((-1/4, 1/2), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*x*gamma(3/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{4} + a} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(b*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^4 + a)*x^2), x)